Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog.
نویسندگان
چکیده
We used extracorporeal perfusion of the reversibly isolated carotid sinus region to determine the effects of specific carotid body (CB) chemoreceptor inhibition on eupneic ventilation (Vi) in the resting, awake, intact dog. Four female spayed dogs were studied during wakefulness when CB was perfused with 1) normoxic, normocapnic blood; and 2) hyperoxic (>500 mmHg), hypocapnic ( approximately 20 mmHg) blood to maximally inhibit the CB tonic activity. We found that CB perfusion per se (normoxic-normocapnic) had no effect on Vi. CB inhibition caused marked reductions in Vi (-60%, range 49-80%) and inspiratory flow rate (-58%, range 44-87%) 24-41 s following the onset of CB perfusion. Thereafter, a partial compensatory response was observed, and a steady state in Vi was reached after 50-76 s following the onset of CB perfusion. This steady-state tidal volume-mediated hypoventilation ( approximately 31%) coincided with a significant reduction in mean diaphragm electromyogram (-24%) and increase in mean arterial pressure (+12 mmHg), which persisted for 7-25 min until CB perfusion was stopped, despite a substantial increase in CO(2) retention (+9 Torr, arterial Pco(2)) and systemic respiratory acidosis. We interpret these data to mean that CB chemoreceptors contribute more than one-half to the total eupneic drive to breathe in the normoxic, intact, awake animal. We speculate that this CB contribution consists of both the normal tonic sensory input from the CB chemoreceptors to medullary respiratory controllers, as well as a strong modulatory effect on central chemoreceptor responsiveness to CO(2).
منابع مشابه
The apneic threshold during non-REM sleep in dogs: sensitivity of carotid body vs. central chemoreceptors.
The relative importance of peripheral vs. central chemoreceptors in causing apnea/unstable breathing during sleep is unresolved. This has never been tested in an unanesthetized preparation with intact carotid bodies. We studied three unanesthetized dogs during normal sleep in a preparation in which intact carotid body chemoreceptors could be reversibly isolated from the systemic circulation and...
متن کاملResponse time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors.
We assessed the speed of the ventilatory response to square-wave changes in alveolar P(CO2) and the relative gains of the steady-state ventilatory response to CO2 of the central chemoreceptors vs. the carotid body chemoreceptors in intact, unanesthetized dogs. We used extracorporeal perfusion of the reversibly isolated carotid sinus to maintain normal tonic activity of the carotid body chemorec...
متن کاملCarotid body denervation in dogs: eupnea and the ventilatory response to hyperoxic hypercapnia.
We assessed the time course of changes in eupneic arterial PCO(2) (Pa(CO(2))) and the ventilatory response to hyperoxic rebreathing after removal of the carotid bodies (CBX) in awake female dogs. Elimination of the ventilatory response to bolus intravenous injections of NaCN was used to confirm CBX status on each day of data collection. Relative to eupneic control (Pa(CO(2)) = 40 +/- 3 Torr), a...
متن کاملCarotid body denervation eliminates apnea in response to transient hypocapnia.
We determined the effects on breathing of transient ventilatory overshoots and concomitant hypocapnia, as produced by pressure support mechanical ventilation (PSV), in intact and carotid body chemoreceptor denervated (CBX) sleeping dogs. In the intact dog, PSV-induced transient increases in tidal volume and hypocapnia caused apnea within 10-11 s, followed by repetitive two-breath clusters separ...
متن کاملVentilatory effects of specific carotid body hypocapnia and hypoxia in awake dogs.
Specific carotid body (CB) hypocapnia in the-10-Torr (less than eupneic) range reduced ventilation in the awake and sleeping dog to the same degree as did CB hyperoxia [CB PO2 (PCBO2); > 500 Torr; C.A. Smith, K.W. Saupe, K. S. Henderson, and J. A. Dempsey. J. Appl. Physiol. 79:689-699, 1995], suggesting a powerful inhibitory effect of hypocapnia at the carotid chemosensor over a range of PCO2 e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 106 5 شماره
صفحات -
تاریخ انتشار 2009